These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Book Material. Additional material that is in the Text Book will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass anv test!<br>NOTE THESE ARE DRAFT LECTURE NOTES!

### 18.1 Common Ion Effect

What happens to the pH of Acetic Acid when it's conjugate base, Acetate, is added?
Common Ion Effect: change produce by adding additional conjugate acid/base to a acid/base solution. E.g. Add Sodium Acetate ( $\mathrm{CH}_{3}-\mathrm{COO}^{-} \mathrm{Na}^{+}$) to Acetic Acid ( $\mathrm{CH} 3-\mathrm{COOH}$ ).
1.0 L of 0.25 M Acetic Acid has a pH of 2.67 (prove it), what happens when 0.10 mol of Sodium Acetate is added? $\quad \mathrm{Ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]=1.8 \times 10^{-5}$

Prove pH of Acetic Acid: (Note: This is not in the book)

|  | $\mathrm{CH} 3-\mathrm{COOH}$ | $\leftrightarrows$ | $\mathrm{H}^{+}$ |
| :--- | :--- | :--- | :--- |
| Initial | CH |  |  |
| Change | 0.25 | 0 | o |
| Equilibrium | -x |  | +x |
| +x |  |  |  |
|  | $0.25-\mathrm{x}$ |  | x |
| x |  |  |  |

$$
\begin{aligned}
\mathrm{Ka}= & \mathrm{x} * \mathrm{x} /(0.25-\underline{\mathbf{x}})=1.8 \times 10^{-5} & & \text { Assume }(0.25-\underline{\mathbf{x}})=0.25 \\
& \mathrm{x}^{2} / 0.25=1.8 \times 10^{-5} & & \mathrm{x}=\left(0.25^{*} 1.8 \times 10^{-5}\right)^{1 / 2}=2.12 \times 10^{-3}=\left[\mathrm{H}^{+}\right]
\end{aligned}
$$

Prove Assumption: $(0.25)=(0.25-\underline{\mathbf{x}})=\left(0.25-2.12 \times 10^{-3}\right)=$ Assumption is True $\mathrm{pH}=-\log \left(\left[\mathrm{H}^{+}\right]\right)=-\log \left(2.12 \times 10^{-3}\right)=\mathbf{2 . 6 7}$

## Solve Problem:

| $\mathrm{CH}_{3}-\mathrm{COOH}+\mathrm{HOH}$ | $\leftrightarrows$ | $\mathrm{H}_{3} \mathrm{O}^{+}+$ | $\mathrm{CH}_{3}-\mathrm{COO}^{-}$ |
| :--- | :--- | :--- | :--- |
| 0.25 |  | o | 0.10 |
| -x |  | +x | +x |
| $0.25-\mathrm{x}$ |  | x | $\mathrm{x}+\mathrm{o.10}$ |

$\mathrm{Ka}=1.8 \times 10^{-5}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3}-\mathrm{COO}^{-}\right] /[\mathrm{CH} 3-\mathrm{COOH}]=\mathrm{x} *(\underline{\mathbf{x}}+0.10) /(0.25-\underline{\mathbf{x}})$
Again, $K a$ is small so $x$ is small, Assume $(\underline{\mathbf{x}}+0.10)=(0.10)$ and $(0.25-\underline{\mathbf{x}})=(0.25)$
$1.8 \times 10^{-5}=\mathrm{x}^{*} 0.10 / 0.25 \quad \mathrm{x}=1.8 \times 10^{-5}{ }^{*} 0.25 / 0.10=4.5 \times 10^{-5}=\left[\mathbf{H 3 O}^{+}\right]$
Prove Assumption: $(0.10)=(x+0.10)=\left(4.5 \times 10^{-5}+0.10\right)=$ Assumption is True
$\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(4.5 \times 10^{-5}\right)=\mathbf{4 . 3 5}$
Per Le Chatelier's Principal, take Acetic Acid at a pH of 2.67, add some Acetate, ion on the right of the balanced equation above, the equilibrium is shifted to the left, uses up some acid, so pH goes more basic to 4.35 !

Interactive Example $18.1 \quad$ ? is pH of solution of 25.0 ml of 0.0500 M NaOH added to 25.0 ml of 0.100 M Lactic Acid ( CH3-CHOH-COOH ). Ka for Lactic Acid is $1.4 \times 10^{-4}$
Hint: All of the NaOH (a strong base) will be used up

Calculate the moles of each: \# Moles = Molarity * Volume
$\mathrm{NaOH} \quad$ \# Moles $=0.0500 \mathrm{M} * 25.0 \mathrm{ml} * 1 \mathrm{~L} / 1000 \mathrm{ml}=1.25 \times 10^{-3}$ Moles
Lactic acid \# Moles $=0.100 \mathrm{M} 25.0 \mathrm{ml} * 1 \mathrm{~L} / 1000 \mathrm{ml}=2.50 \times 10^{-3}$ Moles
Lactic acid to NaOH reaction ratio is $1 / 1$, so Lactic acid is in excess, NaOH is Limiting Reagent
Lactic acid remaining $=2.50 \times 10^{-3}$ Moles, Lactic Acid -1.25 x10 $0^{-3} \mathrm{Moles} \mathrm{NaOH}=1.25 \times 10^{-3} \mathrm{Moles}$
And the amount of Lactic Ion formed $=$ the amount of $\mathrm{NaOH}=1.25 \times 10^{-3}$ Moles
Note: Book makes above more complicated than it really is!
Lactic Acid Concentration is $1.25 \times 10^{-3}$ Moles * $1000 \mathrm{ml} /(25.0 \mathrm{ml}+25.0 \mathrm{ml}){ }^{*} 1 \mathrm{~L}=2.50 \times 10^{-2} \mathrm{M}$
Lactic Ion Concentration is $1.25 \times 10^{-3}$ Moles * $1000 \mathrm{ml} /(25.0 \mathrm{ml}+25.0 \mathrm{ml}){ }^{*} 1 \mathrm{~L}=2.50 \times 10^{-2} \mathrm{M}$

Initial
Change

| $\mathrm{CH} 3-\mathrm{CHOH}-\mathrm{COOH}+\mathrm{HOH}$ | $\leftrightarrows$ | $\mathrm{H}_{3} \mathrm{O}^{+}+$ | $\mathrm{CH} 3-\mathrm{CHOH}^{-C O O}-\mathrm{CH}^{-}$ |
| :--- | :--- | :--- | :--- |
| $2.50 \times 10^{-2}$ |  | o | $2.50 \times 10^{-2}$ |
| -x |  | +x | +x |
| $2.50 \times 10^{-2}-\mathrm{x}$ | x | $2.50 \times 10^{-2}+\mathrm{x}$ |  |

$\mathrm{Ka}=1.4 \times 1 \mathrm{O}^{-4} \quad=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{COO}^{-}\right] /[\mathrm{CH} 3-\mathrm{CHOH}-\mathrm{COOH}]$

$$
=\mathrm{x} *\left(2.50 \times 10^{-2}+\underline{\mathbf{x}}\right) /\left(2.50 \times 10^{-2}-\underline{\mathbf{x}}\right)
$$

Assume $x$ is small then $\left(2.50 \times 10^{-2}+\underline{\mathbf{x}}\right)=2.50 \times 10^{-2}$ and $\left(2.50 \times 10^{-2}-\underline{\mathbf{x}}\right)=2.50 \times 10^{-2}$
$1.4 \times 10^{-4}=\quad \mathrm{X}^{*} 2.50 \times 10^{-2} / 2.50 \times 10^{-2}$ or $\mathbf{x}=1.4 \times 10^{-4}=\mathbf{H 3 O}^{+}$
Prove Assumption $\left(2.50 \times 10^{-2}+x\right)=(0.0250-00014)=$ Close enough to be true
$\mathrm{pH}=-\log \left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=-\log \left(1.4 \times 10^{-4}\right)=\mathbf{3 . 8 5}$

### 18.2 Controlling pH: Buffer Solutions

A Buffer Solution is a solution that resists a change in pH when acid or base is added
Add 0.010 mol of HCl to 1.0 L of pure water, the pH drops from 7 to 2
Add 0.010 mol of NaOH to pure water, the pH increases from 7 to 12

## Buffer Requirements:

2 compounds are needed an acid capable of reacting with $\mathrm{OH}^{-}$
a base that can react with $\mathrm{H}_{3} \mathrm{O}^{+}$
The acid and base must not react with each other
A Conjugate acid-base pair will work
A weak acid and its conjugate base Acetic Acid CH3COOH and Acetate $\mathrm{CH}_{3} \mathrm{COO}^{-}$
A weak base and it's conjugate acid Ammonia NH3 an Ammonium Ion NH4 ${ }^{+}$
How the Acetic Acid / Acetate buffer works:

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HOH} \leftrightarrows \quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

$\begin{array}{lll}\text { Add Hydroxide: } & \mathrm{CH} 3 \mathrm{COOH}+\mathrm{OH}^{-} \leftrightarrows \mathrm{H} 2 \mathrm{O}+\mathrm{CH}_{3} \mathrm{COO}^{-} & \mathrm{K}=1.8 \times 10^{9} \\ & \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \leftrightarrows \mathrm{H}_{2}+\mathrm{CH}_{3} \mathrm{COOH}^{2} & \mathrm{~K}=5.6 \mathrm{x}_{10}{ }^{4}\end{array}$

| Weak Acid | Conjugate Base | Acid $K_{\mathrm{a}}\left(\mathrm{p} K_{\mathrm{a}}\right)$ | Useful pH Range |
| :---: | :---: | :---: | :---: |
| Phthatic acid, $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$ | Hydrogen phthalate ion, $\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{H}\right)\left(\mathrm{CO}_{2}\right)^{-}$ | $1.3 \times 10^{-3}(2.89)$ | 1.9-3.9 |
| Acetic acid, $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ | Acetate ion, $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$ | $1.8 \times 10^{-5}(4.74)$ | 3.7-5.8 |
| Dihydrogen phosphate ion, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ | Hydrogen phosphate ion, $\mathrm{HPO}_{4}{ }^{2-}$ | $6.2 \times 10^{-8}(7.21)$ | 6.2-8.2 |
| Hydrogen phosphate ion, $\mathrm{HPO}_{4}{ }^{2-}$ | Phosphate ion, $\mathrm{PO}_{4}^{3-}$ | $3.6 \times 10^{-13}(12.44)$ | 11.4-13.4 |

Interactive Example 18.2 ? pH of a solution 0.700 M Acetic Acid, 0.600 M Sodium Acetate

|  | $\mathrm{CH} 3 \mathrm{COOH}+\mathrm{HOH} \leftrightarrows$ | ${\mathrm{H} 3 \mathrm{O}^{+}+}^{\mathrm{CH} 3 \mathrm{COO}^{-}}$ |  |
| :--- | :--- | :--- | :--- |
| Initial | o .700 | o | 0.600 |
| Change | -x | +x | +x |
| Equilibrium | $\mathrm{o.700}-\mathrm{x}$ |  | x |

$\mathrm{Ka}=1.8 \times 10^{-5}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\mathrm{x}(0.600+\underline{\mathbf{x}}) /(0.700-\underline{\mathbf{x}})$
Assume $x$ is small (run test), so $(0.600+\underline{\mathbf{x}})=0.600$ and $(0.700-\underline{\mathbf{x}})=0.700$
$1.8 \times 10^{-5}=\mathrm{x}^{*} 0.600 / 0.700 \quad \mathrm{x}=1.8 \times 10^{-5}{ }^{*} 0.700 / 0.600=\mathbf{2 . 1} \times 10^{-5}=\left[\mathbf{H 3 O}^{+}\right]$
Prove Assumption $(0.600+x)=\left(0.500+2.1 \times 10^{-5}\right)=0.500 \quad$ Assumption is True $\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(2.1 \times 10^{-5}\right)=4.68$

General Formulae:
Henderson-Hasselbalch Equation:
The pH of a buffer is determined by:
The strength of the acid expressed as Ka or pKa
The relative amount of acid and conjugate base
Note: When the concentration of [ conjugate base] = [acid] then: $\quad \mathrm{pH}=\mathrm{pKa}+\log (1)=\mathrm{pKa}+\mathrm{o}$
If [ conjugate base] > [acid], then $\mathrm{pH}=\mathrm{pKa}+\log (2)=\mathrm{pKa}+0.3$ or $\quad \mathbf{p H}>\mathbf{p K a}$ If [ conjugate base] < [acid], then $\mathrm{pH}=\mathrm{pKa}+\log (.2)=\mathrm{pKa}-0.7$ or $\quad \mathbf{p H}<\mathbf{p K a}$

## Interactive Example 18.3

2.00 g Benzoic Acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right.$, mw $122.1 \mathrm{~g} / \mathrm{mol}$ ) and 2.00 g Sodium Benzoate $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-} \mathrm{Na}^{+}\right.$, $\mathrm{mw} 144.1 \mathrm{~g} / \mathrm{mol}$ ) mixed with water to make 1.00 L . Ka Benzoic Acid $=6.3 \times 10^{-5}$. ? pH
Calculate the molar concentration of each:

| Benzoic Acid | $2.00 \mathrm{~g} / 122.1 \mathrm{~g} / \mathrm{mol}=0.0164 \mathrm{~mol}$ | $0.0164 \mathrm{~mol} / 1 \mathrm{~L}=0.0164 \mathrm{M}$ |
| :--- | :--- | :--- |
| Sodium Benzoate | $2.00 \mathrm{~g} / 144.1 \mathrm{~g} / \mathrm{mol}=0.0139 \mathrm{~mol}$ | $0.0139 \mathrm{~mol} / 1 \mathrm{~L}=0.0139 \mathrm{M}$ |

pKa Benzoic Acid $=-\log (\mathrm{Ka})=-\log (.3 \times 10-5)=4.20$
$\mathrm{pH}=\mathrm{pKa}+\log ([$ conjugate base $] /[$ acid $])=4.20+\log (0.0139 / 0.0163)=4.13$

## Preparing Buffer Solutions

Example 18.4 Preparing a Buffer Solution How would you prepare 1.0 L of a pH 4.30 buffer

Acid
$\mathrm{HSO}_{4}^{-}$
$\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{HCO}^{-}$

Conjugate Base
Ka
SO4 ${ }^{2-}$
$1.2 \times 10^{-2}$
$1.8 \times 10^{-5}$
$4.8 \times 10^{-11}$

Easy Solution: $\mathrm{CH}_{3} \mathrm{COOH}$ with a Ka of $1.8 \times 10^{-5}$, the -5 says the pH will be less than 5 or in the 4 's This is the buffer to use.
$\mathrm{HSO}_{4}{ }^{-}$with a Ka of $1.2 \times 10^{-2}$ will have a pH of less then 2 , that no good
$\mathrm{HCO}^{-}$with a Ka of $4.8 \times 10^{-11}$ will have a pH of less than 11 , that's no good!
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{Ka}$ * [acid] / [conjugate base]
[acid] / [conjugate base] $=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] / \mathrm{Ka}=10^{-4.13} / 1.8 \times 10^{-5}=5.0 \times 10^{-5} / 1.8 \times 10^{-5}=\mathbf{2 . 8}$
Make a buffer with $\mathbf{0 . 2 8}$ moles of acid and $\mathbf{0 . 1 0}$ moles of conjugate base, water to make 1.0 L
Diluting a buffer solution will not change the pH - see book for discussion
$\mathrm{pH}=\mathrm{pKa}+\log ([$ conjugate base $] /[$ acid $])=\mathrm{pKa}+\log (\mathrm{Moles} / \mathrm{L} / \mathrm{Moles} / \mathrm{L}) \quad$ Moles $/ L$ cancel out

## Example 18.5 Buffer maintain a $\mathbf{p H}$

A. ? is pH change when 1.00 ml of 1.00 M HCl is added to 1.000 L of pure water
B. ? is pH change when it is added to 1.000 L of buffer contained 0.700 M CH 3 COOH and 0.600 M of $\mathrm{CH}_{3} \mathrm{COO}^{-}$
A. $\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$We need the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad$ Note: $\mathrm{V} 2=1.00 \mathrm{ml}+1.000 \mathrm{~L}=1.001 \mathrm{~L}$ $\mathrm{M} 1 \mathrm{~V} 1=\mathrm{M} 2 \mathrm{~V} 2 \quad \mathrm{M} 2=\mathrm{M} 1 \mathrm{~V} 1 / \mathrm{V} 2=1.00 \mathrm{M} *\left[1.00 \mathrm{ml}{ }^{*} 1 \mathrm{~L} /(1000 \mathrm{ml})\right] / 1.001 \mathrm{~L}=9.99 \times 10^{-4} \mathrm{M}$
$\mathbf{p H}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(9.99 \times 10^{-4}\right)=\mathbf{3 . 0 0}$
B. Moles of $\mathrm{HCl}=1.00 \mathrm{M}^{*} 1.00 \mathrm{ml}{ }^{*} 1 \mathrm{~L} / 1000 \mathrm{ml}=0.00100 \mathrm{Mole}$

Note: All of the HCl will react as it's a much stronger acid than $\mathrm{CH}_{3} \mathrm{COOH}$

$\mathrm{Ka}=1.8 \times 10^{-5}=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=\mathrm{x}(\underline{\mathbf{x}}+0.598) /(0.700-\underline{\mathbf{x}})$
Since Ka is small, assume $(\underline{\mathbf{x}}+0.598)=0.598$ and $(0.700-\underline{\mathbf{x}})=0.700$
$\mathrm{Ka}=1.8 \times 10^{-5}=0.598 \times / 0.700 \quad \mathbf{x}=0.700^{*} 1.8 \times 10^{-5} / 0.598=\mathbf{2 . 1} \mathbf{x 1 0} \mathbf{1 0}^{-5}$
Prove Assumption $(\underline{x}+0.598)=\left(2.1 \times 10^{-5}+0.598\right)=0.598$ Assumption is True
$\mathbf{p H}=-\log \left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=-\log \left(2.1 \times 10^{-5}\right)=\mathbf{4 . 6 8}$

So 1 ml of 1.00 M HCl into 1.000 L of pure water changes pH from 7.00 to 3.00 , 1 ml of 1.00 M HCl into 1.000 L of a buffer changes the pH from 7.00 to 4.68 . The buffer works!

STUDENTS ANSWER
Review Check 18.2 1. Which choice would make a good buffer and why?
A. 0.20 M HCN and 0.10 M KCN
B. 0.20 M HCl and 0.10 M KOH
C. $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.10 M HCOOH
D. 0.10 M HCl and 0.010 M KCl
2. If an acetic acid/sodium acetate buffer solution is prepared from 100 ml of 0.10 M acetic acid, what volume of 0.10 M sodium acetate must be added to have a pH of 4.00 ?
3. What is the pH of a buffer composed of 100 ml of 0.20 M NH 4 Cl and 200 ml of $0.10 \mathrm{M} \mathrm{NH}_{3}$ ?

### 18.3 Acid-Base Titrations

The pH at the equivalence point of a strong acid vs a strong base titration is $\mathrm{pH}=7$
The pH of a weak acid vs a strong Base is $\mathrm{pH}>7$
The pH of a strong acid vs a weak base $\mathrm{pH}<7$
Strong Acid vs Strong Base $\quad \mathrm{HCl}+\mathrm{NaOH} \quad \leftrightarrows \mathrm{NaCl}+\mathrm{HOH}$
Net Ionic Equation $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad \leftrightarrows 2 \mathrm{HOH}$


## Adding 0.100 M NaOH to 0.100 M HCl

A. $\mathbf{p H}$ of the initial solution.
$\mathbf{p H}=-\log \left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=-\log (0.100)=\mathbf{1 . 0 0}$
B. pH before equivalence point, when 10.0 ml 0.100 M NaOH is added to 50.0 ml 0.100 M HCl

Moles $\mathrm{NaOH}=$ Molarity * Volume $=0.100\left(10.0 \mathrm{ml}{ }^{*} 1 \mathrm{~L} / 1000 \mathrm{ml}\right)=0.00100 \mathrm{M}$
Moles of $\mathrm{HCl}=$ Molarity $*$ Volume $=0.100\left(50.0 \mathrm{ml}{ }^{*} 1 \mathrm{~L} / 1000 \mathrm{ml}\right)=0.00500 \mathrm{M}$

Initial
Change Equilibrium 08-July-12

$0.00500 \quad 0.00100$ -0.00100 - 0.00100 $0.00400 \quad 0$

Page 5 of 15

We have 0.00400 Moles of $\mathrm{H}_{3} \mathrm{O}^{+}$in 60.0 ml of solution
Molarity of $\mathrm{H}_{3} \mathrm{O}^{+}$is 0.00400 Moles * $1000 \mathrm{ml} / 60.0 \mathrm{ml}{ }^{*} 1 \mathrm{~L}=0.0667 \mathrm{M}$

$$
\mathbf{p H}=-\log \left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=-\log (0.0667)=-\log \left(6.67 \times 10^{-2}\right) \mathbf{1 . 1 7 6}
$$

Student run off the math to show when 49.5 ml of NaOH solution is added, the pH is 3.3

## C. $\mathbf{p H}$ at the equivalence point.

50.0 ml of 0.100 M NaOH is added to 50.0 ml of 0.100 M HCl . All of the Base and acid are neutralized. Therefore the pH is 7
D. pH just after the equivalence point. 55.0 ml 0.100 M NaOH added to 50.0 ml 0.100 M HCl

Moles of $\mathrm{NaOH}=$ Molarity * Vol $=0.100 \mathrm{M} * 55.0 \mathrm{ml}$ * $1 \mathrm{~L} / 1000 \mathrm{ml}=0.00550 \mathrm{Mol}$
Moles of $\mathrm{HCl}=$ Molarity * Volume $=0.100\left(50.0 \mathrm{ml}{ }^{*} 1 \mathrm{~L} / 1000 \mathrm{ml}\right)=0.00500$

|  | $\mathrm{H} 3 \mathrm{O}^{+}$ | $\mathrm{OH}^{-} \quad \leftrightarrows$ | 2 HOH |
| :---: | :---: | :---: | :---: |
| Initial | 0.00500 | 0.00550 |  |
| Change | -0.00500 | -0.0050 |  |
| Mol after Reaction | o | 0.00050 |  |
| Concentration [x] | - | 0.00050 | ml * 1L/ |

$\mathbf{p O H}=-\log \left(\mathrm{OH}^{-}\right)=-\log (0.00476)=-\log \left(4.76 \times 10^{-3}\right)=\mathbf{2 . 3 2 2}$
$\mathbf{p H}=14.00-\mathrm{pOH}=14.00-2.322=\mathbf{1 1 . 6 7 8}$
Weak Acid with a Strong Base Titrate 100.0 ml of 0.100 M Acetic Acid with 0.100 M NaOH


## A. $\mathbf{p H}$ before the titration begins

pH is from weak acid Ka and acid concentration - see also IE 17.5.
100.0 ml * 0.100 M * $1 \mathrm{~L} / 1000 \mathrm{ml}=0.0100$ Moles $\mathrm{CH}_{3} \mathrm{COOH}$

Initial
Change
Equilibrium

| $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HOH} \leftrightarrows$ | $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ |  |
| :--- | :--- | :--- |
| 0.0100 | o | o |
| -x | +x | +x |
| $0.0100-\mathrm{x}$ | x | x |

$\mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=1.8 \times 10^{-5}=\mathrm{x}^{2} /(\mathrm{O} .0100-\underline{\mathbf{x}})$
Since Ka is small, Assume ( $0.0100-\underline{\mathbf{x}}$ ) $=0.0100$
$1.8 \times 10^{-5}=\mathrm{x}^{2} / 0.0100 \quad \mathrm{x}^{2}=1.8 \times 10^{-5}$ * $0.0100 \quad \mathbf{x}=4.24 \times 10^{-4}$
Prove Assumption ( $0.0100-\mathrm{x}$ ) $=\left(0.0100-4.24 \times 10^{-4}\right)=0.0100$ Assumption is True

$$
\mathbf{p H}=-\log \left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=-\log \left(4.24 \times 10^{-4}\right)=\mathbf{3 . 3 7}
$$

B. pH when $1 / 2$ of the Acetic Acid is neutralized.

Initial
Change
Equilibrium
$\mathrm{pKa}=\log \left(1.8 \times 10^{-5}\right)=4.74$
$\mathbf{p H}=\mathrm{pKa}+\log ([$ conjugate base $] /[$ weak acid $])=4.74+\log (0.0500 / 0.0500)=4.74$
Or another way to do it:

|  | $\mathrm{CH} 3 \mathrm{COOH}+$ | $\mathrm{OH}^{-} \leftrightarrows$ | $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H} 2 \mathrm{O}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| Initial | 0.0100 |  | +0.0500 | 0 |
| Change | -0.0500 | -0.0500 | +0.0500 | 0 |
| Equilibrium | 0.0500 | 0 | 0.0500 | 0.0500 |

$\mathbf{p H}=\mathrm{pKa}+\log ([$ conjugate base $] /[$ weak acid $])=4.74+\log (0.0500 / \mathrm{o} .0500)=4.74$
C. Closer to the end point, from Interactive Example 18.6
(a) What is the pH when 90.0 ml of the 0.100 M NaOH is added

Calculate the amounts of material after all of the 90.0 ml of NaOH is reacted
90.0 ml * 1 L * $0.100 \mathrm{M} / 1000 \mathrm{ml}=0.00900$ Moles NaOH

## Start

Change
After Reaction
$\mathrm{CH}_{3} \mathrm{COOH}+$
$\mathrm{OH}^{-} \leftrightarrows \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$
0.0100
-0.00900
0.0010 0.00900 ○ -0.00900 +0.00900
$0 \quad 0.00900$
$\mathrm{pH}=\mathrm{pKa}+\log ([$ conjugate base $] /[$ weak acid $])=4.74+\log (0.00900 / \mathrm{o} .0010)=4.74+0.95$
pH $=\mathbf{5 . 6 9}$
D. After the end point: ? pH after 110.0 ml of NaOH is added?

Note: Moles $\mathrm{NaOH}=110.0 \mathrm{ml}$ * 1 L * $0.100 \mathrm{M} / 1000 \mathrm{ml}=0.01100$ Moles
Initial
Change
After Reaction

| $\mathrm{CH}_{3} \mathrm{COOH}+$ | $\mathrm{OH}^{-} \leftrightarrows$ | $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$ |
| :--- | :--- | :--- |
| 0.0100 | 0.01100 | o |
| -0.0100 | -0.0100 | 0.0100 |
| 0 | o.00100 | 0.0100 |

Most of the pH is from the [ $\mathrm{OH}-]$ and very little from the reaction of Acetate with water
$\left[\mathrm{OH}^{-}\right]=$Moles $/$Liter $=1.00 \times 10^{-3} /(100 \mathrm{ml}+110 \mathrm{ml}) * 1 \mathrm{~L} / 1000 \mathrm{ml}=4.76 \times 10^{-3} \mathrm{M}$
So: $\mathbf{p H}=14.0-\log \left(\left[\mathrm{OH}^{-}\right]\right)=14.00-\log \left(4.76 \times 10^{-3}\right)=14.00-2.32=\mathbf{1 1 . 6 8}$

## Titration of Weak Polyprotic Acids



Weak Polyprotic Acids will have two break points, one for the equivalence point for each proton loss:

Ka1 $=5.9 \times 10^{-2}$

$\mathrm{HOOC}_{-} \mathrm{COO}^{-}+\mathrm{HOH} \leftrightarrows{ }^{-} \mathrm{OOC}^{-} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \mathrm{Ka} 2=6.4 \times 10^{-5} \quad$ Oxalic Acid
Titration of a Weak Base with a Strong Acid

$\mathrm{NH} 3+\mathrm{H}_{3} \mathrm{O}^{+} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{HOH}$
Titrate 100.0 ml of 0.100 M NH 3 with 0.100 M HCl

## a. What is Initial pH

Start
$\mathrm{NH}_{3}+\quad \mathrm{H} 2 \mathrm{O} \leftrightarrows$

| $\mathrm{NH}_{4}{ }^{+}+$ | $\mathrm{OH}^{-}$ |
| :--- | :--- |
| o | o |
| +x | +x |
| x | x |

Equilibrium
0.100
-x
0.100-x

X
x
$\mathrm{Kb}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}^{+}\right] /[\mathrm{NH} 3]=1.8 \times 10^{-5}=\mathrm{x}^{*} \mathrm{x} /(\mathrm{O} .100-\underline{\mathbf{x}})$
Kb is small, Assume $(0.100-\underline{\mathbf{x}})=0.0100$
$1.8 \times 10^{-5}=x * x / 0.100$
$\mathrm{x}^{2}=1.8 \times 10^{-5}{ }^{*} 0.100=1.8 \times 10^{-6} \mathrm{x}=\mathbf{1 . 3 4} \times \mathbf{1 0}^{-3}$

Prove Assumption ( $0.0100-\mathrm{x})=(0.0100-0.00134)-0.0100 \quad$ Assumption is True
$\left[\mathrm{OH}^{-}\right]=\mathrm{x}=1.34 \times 10^{-3} \quad \mathrm{pOH}=2.87 \quad \mathrm{pH}=14.00-\mathrm{pOH}=11.13$

## B. At the halfway point $\quad\left[\mathrm{NH}_{3}\right]=\left[\mathrm{NH}_{4}{ }^{+}\right]$

pKa of $5.6 \times 10^{-10}=-\log \left(5.6 \times 10^{-10}\right)=9.2$
$\mathbf{p H}=\mathrm{pKa}+\log ([$ conjugate base $] /[$ weak acid $])=9.2+\log \left(\left[\mathrm{NH}_{4}{ }^{+}\right] /\left[\mathrm{NH}_{3}\right]\right)=9.2+\log (1)=\mathbf{9 . 2}$
Example 18.7 ? is the pH at the equivalence point
Moles of $\mathrm{HCl}=$ Moles of $\mathrm{NH}_{3}=$ see above $=0.0100$ Moles

Initial
Change
After Reaction
Concentration []
Now, take this $\mathrm{NH}_{4}{ }^{+}$and see how it reacts with water
Initial
Change
Equilibrium
$\mathrm{Ka}=\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{NH}_{4}{ }^{+}\right]=5.6 \times 10^{-10}=\mathrm{x} * \mathrm{x} /(0.0500-\underline{\mathbf{x}})$
Since Ka is small, Assume ( $0.0100-\underline{\mathbf{x}}$ ) $=0.0500$
$5.6 \times 10^{-10}=\mathrm{x}^{2} / 0.0500 \quad \mathrm{x}^{2}=5.6 \times 10^{-10} * 0.0500 \quad \mathbf{x}=5.29 \times 10^{-6}$
Prove Assumption ( $0.0100-\underline{\mathbf{x}}$ ) $=\left(0.0100-5.29 \times 10^{-6}\right)=0.0100$

## Assumption is True

$\mathbf{p H}=-\log \left(\mathrm{H}_{3} \mathrm{O}^{+}\right)=-\log \left(5.29 \times 10^{-6}\right)=\mathbf{5 . 2 8}$
pH Indicators as used in titrations, $\underline{\text { Hind }}$, is a substance used to signal the equivalence point of a titration by a change in some physical property such as color

$$
\text { Hind }+\mathrm{H} 2 \mathrm{O} \leftrightarrows \mathrm{H} 3 \mathrm{O}++ \text { Ind }^{-}
$$




### 18.4 Solubility of Salts

Solubility Product Constant Ksp
$\mathrm{AgBr} \downarrow \leftrightarrows \mathrm{Ag}^{+}+\mathrm{Br}^{-}$

Solubility is in Moles/Liter, 100 ml or other units
(Solubility $7.35 \times 10^{-7} \mathrm{M}$ for each ion)
$\mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]=\left[7.35 \times 10^{-7}\right]\left[7.35 \times 10^{-7}\right]=5.40 \times 10^{-13}$

| $\mathbf{A}_{\mathbf{x}} \mathbf{B}_{\mathbf{y}} \downarrow \leftrightarrows \mathbf{x ~ A y}+\mathbf{y} \mathbf{B}^{\mathbf{x}-}$ | $\mathbf{K s p}=\left[\mathrm{A}^{\mathbf{y}+}\right]_{\mathbf{x}}\left[\mathbf{B}^{\mathbf{x}-}\right] \mathbf{y}$ |  |
| :--- | :--- | :--- |
| $\mathrm{CaF} 2 \downarrow \leftrightarrows \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}$ | $\mathrm{Ksp}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$ | $=5.3 \times 10^{-11}$ |
| $\mathrm{Ag}_{2} \mathrm{SO}_{4} \downarrow \leftrightarrows 2 \mathrm{Ag}^{+}+\mathrm{SO}_{4}{ }^{2-}$ | $\mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}{ }^{2-}\right]$ | $=1.2 \times 10^{-5}$ |

Table 18.2 Some Common Insoluble Compounds and Their $K_{\text {sp }}$ Values*

| Formula | Name | $K_{\text {sp }}\left(25^{\circ} \mathrm{C}\right)$ | Common Names/Uses |
| :---: | :---: | :---: | :---: |
| $\mathrm{CaCO}_{3}$ | Calcium carbonate | $3.4 \times 10^{-9}$ | Calcite, iceland spar |
| $\mathrm{MnCO}_{3}$ | Manganese(II) carbonate | $2.3 \times 10^{-11}$ | Rhodochrosite (forms rose-colored crystals) |
| $\mathrm{FeCO}_{3}$ | Iron(II) carbonate | $3.1 \times 10^{-11}$ | Sidenite |
| $\mathrm{CaF}_{2}$ | Calcium fluoride | $5.3 \times 10^{-11}$ | Fluorite (source of HF and other inorganic fluorides) |
| AgCl | Silver chloride | $1.8 \times 10^{-10}$ | Chlorargyrite |
| AgBr | Silver bromide | $5.4 \times 10^{-13}$ | Used in photographic film |
| $\mathrm{CaSO}_{4}$ | Calcium sulfate | $4.9 \times 10^{-5}$ | Hydrated form is commonly called gypsum |
| $\mathrm{BaSO}_{4}$ | Barium sulfate | $1.1 \times 10^{-10}$ | Barite (used in "driling mud" and as a component of paints) |
| $\mathrm{SrSO}_{4}$ | Strontium sulfate | $3.4 \times 10^{-7}$ | Celestite |
| $\mathrm{Ca}(\mathrm{OH})_{2}$ | Calcium hydroxide | $5.5 \times 10^{-5}$ | Slaked lime |

* The values in this table were taken from Lange's Handbook of Chemistry, 15th edition, McGraw-Hill Publishers, New York, NY (1999). Additional $K_{\text {sp }}$ values are given in Appendix J.


## Solubility and Ksp

Interactive Example $18.8 \quad$ Calculate the Ksp for Calcium Fluoride if $\mathrm{Ca}^{2+}$ is $2.3 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ $\mathrm{CaF}_{2} \downarrow \leftrightarrows \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-} \quad \mathrm{Ksp}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$

For every one mole of $\mathrm{CaF}_{2}$ that dissolves, 1 mole of $\mathrm{Ca}^{2+}$ is formed and 2 moles of F - is formed

$$
\begin{aligned}
& {[\mathrm{F}-]=2\left[\mathrm{Ca}^{2+}\right]=2\left[2.3 \times 10^{-4}\right]=4.6 \times 10^{-4}} \\
& \mathbf{K s p}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}=\left[2.3 \times 10^{-4}\right]\left[4.6 \times 10^{-4}\right]^{2}=\mathbf{4 , 9} \times 1 \mathbf{1 0}^{-11}
\end{aligned}
$$

Now change the problem around and using Ksp, calculate the solubility of an ion
Interactive Example 18.9 Ksp for $\mathrm{BaSO}_{4}$ is $1.1 \times 10^{-10}$, what is its solubility in moles \& g/L

Initial
Change
Equilibrium
$\mathrm{BaSO}_{4} \downarrow \leftrightarrows \mathrm{Ba}^{2+}+\quad \mathrm{SO}_{4}{ }^{2-}$
0
$+\mathrm{x}$
x
$\mathrm{Ksp}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=1.1 \times 10^{-10}=\mathrm{x} * \mathrm{x}=\mathrm{x}^{2} \quad \mathrm{x}=1.05 \times 10^{-5}=\mathbf{1 . 1} \times 10^{-5}=$ Moles $/ \mathrm{L}$
$1.1 \times 10^{-5}=$ Moles $/ L^{*} 233 \mathrm{~g} /$ Mole $=2.4 \times 10^{-3} \mathrm{~g} / \mathrm{L}$
Example 18.10 Ksp for MgF 2 is $5.2 \times 10^{-11}$, what is the solubility of the salt in moles \& $\mathrm{g} / \mathrm{L}$

| $\mathrm{MgF}_{2} \downarrow \leftrightarrows$ | $\mathrm{Mg}^{2+}+$ | $2 \mathrm{~F}^{2-}$ |
| :--- | :--- | :--- |
|  | o | o |
|  | +x | +2 x |
|  | x | 2 x |

$\mathrm{Ksp}=\left[\mathrm{Mg}^{2+}\right]\left[2 \mathrm{~F}^{2-}\right]^{2}=5.2 \times 10^{-11}=\mathrm{x} *(2 \mathrm{x})^{2}=4 \mathrm{x}^{3} \quad \mathrm{x}=2.35 \times 10^{-4}=\mathbf{2 . 4} \mathbf{x 1 0} \mathbf{1 0}^{-4}=$ Moles $/ \mathrm{L}$
$2.4 \times 10^{-4}=$ Moles $/ L^{*} 62.3 \mathrm{~g} /$ Mole $=1.5 \times 10^{-2} \mathbf{g} / \mathbf{L}$
Relative Solubility's
$\mathrm{AgCl} \downarrow \quad \leftrightarrows \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
$K s p=1.8 \times 10^{-10}$
But
$\mathrm{Ag}_{2} \mathrm{CrO}_{5} \downarrow \quad \leftrightarrows 2 \mathrm{Ag}^{+}+\mathrm{CrO}_{5}{ }^{2-}$
$K s p=9.0 \times 10^{-12}$

Ya'd think the AgCl is more soluble, but - work it out:

Initial
$\mathrm{AgCl} \downarrow \quad \leftrightarrows \quad \begin{aligned} & \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \\ & \mathrm{O} \quad \mathrm{O}\end{aligned}$
Change
$\begin{array}{ll}+\mathrm{x} & +\mathrm{x} \\ \mathrm{x} & \mathrm{x}\end{array}$
Equilibrium
$\mathrm{x} \quad \mathrm{x}$
$\operatorname{Ksp}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.8 \times 10^{-10}=\mathrm{x} * \mathrm{x} \quad \mathrm{x}=1.34 \times 10^{-5}=\mathbf{1 . 3} \times 10^{-5}$ Moles $/ \mathbf{L}$

Initial
Change
Equilibrium
Ksp $=\left[2 \mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{5}^{2}\right]=9.0 \times 10^{-12}=(2 \mathrm{x})^{2} \mathrm{x}=4 \mathrm{x}^{3} \quad \mathbf{x}=\mathbf{1 . 3} \times 10^{-4}$ Moles $/ \mathbf{L}$

## Solubility and the Common Ion

What happens if we add some Silver ions (Silver Nitrate) to a saturated solution of Silver Acetate?

$$
\mathrm{AgCH}_{3} \mathrm{COO} \downarrow \leftrightarrows \mathrm{Ag}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

Le Chatelier's principal says the reaction will shift to the left so more Silver Acetate will ppt out
Example 18.11 Saturated AgCl in 1.00 L of 0.55 M NaCl ? AgCl will dissolve?

Initial
Change
Final

| $\mathrm{AgCl} \downarrow \leftrightarrows$ | $\mathrm{Ag}^{+} \quad$ | + | $\mathrm{Cl}^{-}$ |
| :--- | :--- | :--- | :--- |
|  |  |  | 0.55 |
|  | +x |  | +x |
|  | x |  | $0.55+\mathrm{x}$ |

$\mathrm{Ksp}=1.8 \times 10^{-10}=\mathrm{x} *(0.55+\mathrm{x})$
Ksp is small, Assume $(0.55+x)=0.55$, or solve the Quadratic

$$
1.8 \times 10^{-10}=0.55 \mathrm{x} \quad \mathbf{x}=3.27 \times 10^{-10}=\mathbf{3 . 3} \times 10^{-10}
$$

Prove Assumption ( $0.55-3.3 \times 10^{-10}$ ) $=0.55 \quad$ Assumption is True
Wt AgCl in grams $=$ Moles $*$ Mw $=3.3 \times 10^{-10}$ Moles * $143 \mathrm{~g} / \mathrm{Mole}=\mathbf{4 . 7} \times \mathbf{1 0}^{-8} \mathbf{g ~ A g C l}$
Student - calculate the solubility of AgCl in pure water, without adding the NaCl

## Effect of a Basic Anion on Salt Solubility

Any salt containing an Anion that is the Conjugate Base of a weak acid will dissolve in water to a greater extent than given by Ksp. These salts will dissolve in strong acids. This includes salts of

Phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$
Carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$
$\mathrm{PbS} \downarrow \leftrightarrows \mathrm{Pb}^{2+}+\mathrm{S}^{2-}$
$\mathrm{CaCO}_{3} \downarrow \quad \leftrightarrows \quad \mathrm{Ca}^{2+}+\mathrm{CO}_{2}{ }^{2-} \quad \mathrm{Ksp}=3.4 \times 10^{-9}$
$\mathrm{CO}_{2}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \leftrightarrows \quad \mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \quad 1 / \mathrm{Ka} 2=2.1 \times 10^{10}$
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \leftrightarrows \quad \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \quad 1 / \mathrm{Ka} 1=2.4 \times 1 \mathrm{O}_{6}$
$\mathrm{H}_{2} \mathrm{CO}_{3} \quad \leftrightarrows \quad \mathrm{CO}^{2} \uparrow+\mathrm{H}^{2} \mathrm{O} \quad \mathrm{K}=10^{5} \quad$ You can see the CO 2 Bubbles
$\mathrm{FeS} \downarrow+2 \mathrm{H}_{3} \mathrm{O}^{+} \leftrightarrows \quad \mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{~S} \uparrow+2 \mathrm{H}_{2} \mathrm{O} \quad$ Metal Sulfides in strong acids
$\mathrm{Ag}_{3} \mathrm{PO}_{4} \downarrow+3 \mathrm{H}_{3} \mathrm{O}^{+} \quad \leftrightarrows 3 \mathrm{Ag}^{+}+\mathrm{H}_{3} \mathrm{PO}_{4}$ (a weak acid) $+3 \mathrm{H}_{2} \mathrm{O} \quad$ Metal Phosphates
$\mathrm{Mg}(\mathrm{OH})_{2} \downarrow+2 \mathrm{H}_{3} \mathrm{O}^{+} \quad \leftrightarrows \mathrm{Mg}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad$ Metal Hydroxides
Salts are not soluble if the anion is a conjugate base of a strong acid:
$\mathrm{AgCl} \downarrow \leftrightarrows \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-} \leftrightarrows \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}$
18.5 Precipitation Reactions
$\mathrm{AgCl} \downarrow \leftrightarrows \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
At Equilbrium
If not at Equilibrium
$K s p=1.8 \times 10^{-10}$
$\mathrm{K} \ll 1$ Is very very small as $\mathrm{HCl}+\mathrm{H} 2 \mathrm{O}$ is very very large

## Ksp and $Q$

$$
\begin{aligned}
& \mathrm{Ksp}=1.8 \times 10^{-10} \\
& \mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \\
& \mathbf{Q s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]
\end{aligned}
$$

If $\quad \mathrm{Q}=\mathrm{K} \quad$ The solution is at Equilibrium and is a Saturated Solution
$\mathrm{Q}<\mathrm{K} \quad$ The solution is not Saturate
Q > K The solution is Super Saturated and precipitation will occur.

## CO2 and the Ocean:

Over the past 200 Years, the oceans have absorbed 550 Billion (550,000,000,000) Tons of CO2 Currently absorbing 22 Million (22,000,000) Tons of CO2 DAY
All the man-made carbon:
Would increase the amount of CO 2 by $20 \%$ if not absorbed by the ocean
Would raise the temp of the earth by $2^{\circ} \mathrm{C}$
CO 2 dissolved in the ocean forms a weak acid - Carbonic Acid
$\mathrm{H} 2 \mathrm{O}+\mathrm{CO} 2 \leftrightarrows \mathrm{H} 2 \mathrm{CO} 3$
This acid can dissolve the CaCO 3 shells of marine life - see above equation
Interactive Example $18.13 \quad \mathrm{AgCl}$ is placed in a beaker of water. After some time, $\mathrm{Ag}^{+}$and $\mathrm{Cl}^{-}$are measured at $1.2 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$. Is the system at equilibrium?

$$
\mathrm{Qsp}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\left[1.2 \times 10^{-5}\right]\left[1.2 \times 10^{-5}\right]=1.4 \times 10^{-10}
$$

$\mathrm{Ksp}=1.8 \times 10^{-10} \quad$ Qsp $<\mathrm{Ksp}$, the solution is NOT at equilibrium

## Ksp, Precipitation Reactions

Will a precipitate occur? What concentrations of ions are required to from a ppt?
$\left[\mathrm{Mg}^{2+}\right]=1.5 \times 10^{-6} \mathrm{M}, \mathrm{NaOH}$ is added to make $\mathrm{OH}^{-} 1.0 \times 10^{-4} \mathrm{M} . \mathrm{Mg}(\mathrm{OH})_{2} \mathrm{Ksp}=5.6 \times 10^{-12}$.
If there is no ppt, will it occur if [OH-] is increased to $1.0 \times 10^{-2} \mathrm{M}$ ?
$\mathrm{Mg}(\mathrm{OH})_{2} \downarrow \leftrightarrows \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}$
Qsp $=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\left[1.5 \times 10^{-}\right]\left[1.0 \times 10^{-4}\right]^{2}=1.5 \times 10^{-14}$
Qsp $=1.5 \times 10^{-14}<\mathrm{Ksp}=5.6 \times 10^{-12}$. No ppt will form
Qsp $=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\left[1.5 \times 10^{-}\right]\left[1.0 \times 10^{-2}\right]^{2}=1.5 \times 10^{-10}$
Qsp $=1.5 \times 10^{-10}>K s p=5.6 \times 10^{-12}$. A ppt will form!
Interactive Example 18.14 Ion concentration required to begin ppt
A. $\left[\mathrm{Ba}^{2+}\right]$ is 0.010 M . How much $\mathrm{SO}_{4}{ }^{2-}$ is required to start ppt formation?

$$
\begin{aligned}
& \mathrm{BaSO} 4 \downarrow \leftrightarrows \mathrm{Ba}^{2+}+\mathrm{SO} 4^{2-} \quad \mathrm{Ksp}=1.1 \times 10^{-10}=\left[\mathrm{SO}_{4}^{2-}\right]\left[\mathrm{Ba}^{2+}\right] \\
& {\left[\mathrm{SO}_{4}^{2-}\right]=\mathrm{Ksp} /\left[\mathrm{Ba}^{2+}\right]=1.1 \times 10^{-10} / \mathrm{o.010}=1.1 \times 10^{-8} \mathrm{M}}
\end{aligned}
$$

B. When the [Sulfate] is 0.015 M , what is the [Barium] ?

$$
\left[\mathrm{Ba}^{2+}\right]=\mathrm{Ksp} /\left[\mathrm{SO}_{4}^{2-}\right]=1.1 \times 10^{-10} / 0.015=7.3 \times 10^{-9} \mathrm{M}
$$

Students read and understand Example 18.15 Will a ppt occur?

### 18.6 Equilibrium with Complex Ions

Add $\mathrm{Ni}^{2+}$ to water and you form a Ligand of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ The negative end of the polar water molecules ligh up with the positive metal ion. If you add Ammonia ( $\mathrm{NH}_{3}$ ), the water is displace by $\mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \quad \mathrm{K}_{\mathrm{f}}$ is a Formation Constant

$$
\mathrm{Cu}^{2+}+4 \mathrm{NH} 3 \leftrightarrows\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \quad \mathrm{K}_{\mathrm{f}}=2.1 \times 1 \mathrm{O}^{13}
$$

Example 18.16 Complex Ion Equilibria
$?\left[\mathrm{Cu}^{2+}\right]$ in 0.00100 mole of CuCpx added to 1.00 L of $1.50 \mathrm{M} \mathrm{HN}_{3}$ ? $\mathrm{K}_{\mathrm{f}}=2.1 \times 10^{13}$

Initial
Change
$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \leftrightarrows \quad \mathrm{Cu}^{2+}+4 \mathrm{NH}_{3}$

Equilibrium
-x
$\begin{array}{ll}\mathrm{o} & 1.50-\left(4^{*} 0.00100\right) \\ +\mathrm{x} & +4 \mathrm{x} \\ \mathrm{x} & 1.50-0.00400+4 \mathrm{x}\end{array}$
$\mathrm{K}_{\mathrm{d}}=1 / \mathrm{K}_{\mathrm{f}}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4} /\left[\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}\right]=1 / 2.1 \times 10^{13}=\mathrm{x}(1.50-0.00400+4 \mathrm{x})^{4} /(0.00100-\mathrm{x})$
Since $K_{f}$ is very large, $x$ is very small and $(1.50-0.00400+\underline{\mathbf{4 x}})=1.50$ and $(0.00100-\underline{\mathbf{x}})=0.0010$
$1 / 2.1 \times 10^{13}=\mathrm{x}(1.50) 4 /(0.00100)$
$\mathrm{x}=9.4 \times 10^{-18}$

Prove Assumption $(0.00100-x)=\left(0.00100-9.4 \times 10^{18}\right)=0.00100$ Assumption is True

### 18.7 Solubility of Complex Ions

AgCl does not dissolve in water or a strong acid. It does dissolve in Ammonia
$\mathrm{AgCl} \downarrow+2 \mathrm{NH} 3 \quad \leftrightarrows\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}^{-}$

| $\mathrm{AgCl} \downarrow$ | $\leftrightarrows \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$ | $\mathrm{Ksp}=1.8 \times 10^{-10}$ |
| :--- | :---: | :--- |
| $\mathrm{Ag}^{+}+2 \mathrm{NH}_{3}$ | $\leftrightarrows\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$ | $\mathrm{K}_{\mathrm{f}}=1.1 \times 10^{7}$ |
| $\mathrm{~K}_{\text {net }}=\mathrm{K}_{\text {sp }}{ }^{*} \mathrm{~K}_{\mathrm{f}}=1.8 \times 1 \mathrm{O}^{-10}{ }^{*} 1.1 \times 10^{7}=2.0 \times 10^{-3}=$ | $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}[\mathrm{Cl}-] /[\mathrm{NH} 3]^{2}$ |  |



## Example 18.17 Complex Ions Solubility

? is $\mathrm{K}_{\mathrm{net}}$ for dissolving AgBr in a solution of Thiosulfate, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
$\mathrm{AgBr} \downarrow \leftrightarrows \mathrm{Ag}^{+}+\mathrm{Br}^{-}$
$\mathrm{Ag}^{+}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \leftrightarrows\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3^{-}}+\mathrm{Br}^{-}$

$$
\mathrm{K}_{\mathrm{sp}}=5.0 \times 10^{-13}
$$

Net $\mathrm{AgBr} \downarrow 2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \leftrightarrows\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{--}+\mathrm{Br}^{-}$

$$
\mathrm{K}_{\mathrm{f}}=2.9 \times 10^{13}
$$

## Book Reactions that you need to be able to solve for Ch 18

18.1 Prove pH of Acetic Acid

Add Sodium Acetate to Acetic Acid, ? pH
IE 18.1 NaOH and Lactic Acid
NaOH Limiting reactant
IE 18.2 Acetic Acid and Sodium Hydroxide
IE 18.3 Benzoic Acid and Sodium Benzoate
IE 18.4 Preparing a Buffer Solution
IE 18.5 Buffer Maintains a pH
Strong Acid vs Strong Base
A. pH of initial solution
B. pH before the equivalence point
C. pH at the equivalence point
D. pH just after the equivalence point

IE 18.6 Weak Acid vs Strong Base Acetic Acid vs NaOH
A. pH before the titration begins

I don't get same answer as book, use book
B. pH when $1 / 2$ the Acetic Acid is neutralized
C. pH when 90.0 ml of NaOH is added

IE 18.7 Titrate of Weak Base with Strong Acid NH3 with HCl
A. pH Initial
B. At half way point

IE 18.8 Ksp for CaF2
IE 18.9 Given Ksp, calculate solubility in g/L
IE 18.10 Given Ksp, calculate solubility in g/L
Relative Solubility of AgCl vs $\mathrm{Ag}_{2} \mathrm{CrO}_{5}$
Ex 18.11 Saturated AgCl and NaCl
IE 18.13 AgCl in a beaker over time, Q
$\mathrm{Mg}(\mathrm{OH}) 2$ Qsp precipitation
IE 18.14 Ion concentration to begin ppt
IE 18.15 Ksp and precipitation
IE 18.17 Complex Ion Solubility

